Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts).
نویسندگان
چکیده
Layered FeII-FeIII hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used in the synthesis of sulfate-interlayered GR (GRSO4) by aerial oxidation of FeII or co-precipitation by adding FeIII salt to an aqueous solution of FeII at constant pH. In both the oxidation and the co-precipitation methods pure crystalline GRSO4 was precipitated in the presence of 70mM GLY (pH 8.0), whereas in the absence of GLY, synthesis failed under similar conditions. Gycine functions as both a pH buffer and a ligand; FeII-GLY complexes serve as a source of base (FeII-GLY+H2O→FeII+H-GLY+OH-) during GR formation, supplying about 45% of the total base required for the synthesis. The GLY buffer decreases pH fluctuations during base addition and hence allows for fast GRSO4 precipitation, minimizing byproduct formation. The use of other pH buffers [4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid and 2-amino-2-(hydroxymethyl)-1,3-propanediol] was also tested but failed. Mössbauer spectroscopy, X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and FeII measurements confirmed the purity, stoichiometry, and pyroaurite-type structure of the obtained GRSO4. The formula of GRSO4 was found to be FeII4.08FeIII1.98(OH)11.6(SO4)1.00, and the tabular GR crystals had a lateral size of 100-500nm and a thickness of about 40nm. Upscaling of the synthesis by either 25 times in volume or 20 times in FeII concentration resulted in pure GRSO4 products. Compared with the conventional unbuffered GRSO4 synthesis method, the present method can provide pure products with a controllable, fast, and low-cost process.
منابع مشابه
Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles.
Green rusts, which are mixed ferrous/ferric hydroxides, are found in many suboxic environments and are believed to play a central role in the biogeochemistry of Fe. Analysis by U LIII-edge X-ray absorption near edge spectroscopy of aqueous green rust suspensions spiked with uranyl (U(VI)) showed that U(VI) was readily reduced to U(IV) by green rust The extended X-ray absorption fine structure (...
متن کاملMetallic iron for environmental remediation: learning from electrocoagulation.
The interpretation of processes yielding aqueous contaminant removal in the presence of elemental iron (e.g. in Fe(0)/H(2)O systems) is subject to numerous complications. Reductive transformations by Fe(0) and its primary corrosion products (Fe(II) and H/H(2)) as well as adsorption onto and co-precipitation with secondary and tertiary iron corrosion products (iron hydroxides, oxyhydroxides, and...
متن کاملMineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier.
Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 m...
متن کاملSynthesis and transformation of iron-based layered double hydroxides
Iron-based layered double hydroxides (LDHs) obey to the general chemical formula [MII(1-x)MIIIx(OH)2]x+. [(x/n) An-, m H2O]xand contain a minimum of 50 % of iron, i.e. FeII or FeIII, in the cationic sheets. As LDHs contain FeII species, these are interesting minerals for several applications such as the reduction of anionic pollutants or the degradation of organic pollutants. They are mostly pr...
متن کاملA geochemical investigation of heterogeneous redox reactions between Fe(II), Fe(III), and uranium
Iron (Fe) minerals and ferrous iron (Fe(II)) play an important role in the several natural elemental cycles, including the carbon cycle, nutrient cycles, and the cycling of metals. In this work we have characterized the reactivity structural Fe(II) in several Fe minerals and in natural soil with uranium. We have studied the reactivity of Fe(II) in solution with the Fe oxide goethite conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 497 شماره
صفحات -
تاریخ انتشار 2017